Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

Computational Approaches for Stochastic Shortest Path on Succinct MDPs

Krishnendu Chatterjee!, Hongfei Fu?', Amir Goharshady' and Nastaran Okati®
'IST Austria
2Shanghai Jiao Tong University
3Ferdowsi University of Mashhad
kchatterjee @ist.ac.at, fuhf@cs.sjtu.edu.cn, goharshady @ist.ac.at, nastaran.okati@mail.um.ac.ir

Abstract

We consider the stochastic shortest path (SSP)
problem for succinct Markov decision processes
(MDPs), where the MDP consists of a set of vari-
ables, and a set of nondeterministic rules that up-
date the variables. First, we show that several ex-
amples from the Al literature can be modeled as
succinct MDPs. Then we present computational
approaches for upper and lower bounds for the
SSP problem: (a) for computing upper bounds, our
method is polynomial-time in the implicit descrip-
tion of the MDP; (b) for lower bounds, we present a
polynomial-time (in the size of the implicit descrip-
tion) reduction to quadratic programming. Our ap-
proach is applicable even to infinite-state MDPs.
Finally, we present experimental results to demon-
strate the effectiveness of our approach on several
classical examples from the Al literature. ¥

1 Introduction

Markov decision processes. Markov decision processes
(MDPs) [Howard, 1960] are a standard mathematical model
for sequential decision making, with a wide range of appli-
cations in artificial intelligence and beyond [Puterman, 1994;
Filar and Vrieze, 1997; Bertsekas, 2005]. An MDP consists
of a set of states, a finite set of actions (that represent the non-
deterministic choices), and a probabilistic transition function
that describes the transition probability over the next states,
given the current state and action. One of the most classi-
cal optimization objectives in MDPs is the stochastic shortest
path (SSP) problem, where the transitions of the MDP are
labeled with rewards/costs, and the goal is to optimize the
expected total rewards until a target set is reached.

Curse of dimensionality. In many typical applications,
the computational analysis of MDPs suffers from the curse of
dimensionality. The state space of the MDP is huge as it rep-
resents valuations to many variables that constitute the MDP.
A well-studied approach for algorithmic analysis of large

T Corresponding Author
A full version of this paper, including details and formal
proofs, is available at [Chatterjee er al., 2018].

4700

MDPs is to consider factored MDPs [Guestrin et al., 2003;
Delgado et al., 20111, where the transition and reward func-
tion dependency can be factored only on few variables.

Succinct MDPs. In the spirit of factored MDPs, which
aim to deal with the curse of dimensionality, we consider suc-
cinct MDPs, where the MDP is described implicitly by a set
of variables, and a set of rules that describe how the variables
are updated. The rules can be chosen non-deterministically
from this set at every time step to update the variables, un-
til a target set (of valuations) is reached. The rules and the
target set represent the succinct description of the MDP. We
consider the SSP problem for succinct MDPs.

Our contributions. Our main contributions are as fol-
lows:

1. First, we show that many examples from the Al literature
(e.g., Gambler’s Ruin, Robot Planning, and variants of
Roulette) can be naturally modeled as succinct MDPs.

2. Second, we present mathematical and computational re-
sults for the SSP problem for succinct MDPs. For the
SSP problem the sup-value (resp. inf-value) represents
the expected shortest path value with supremum (resp.,
infimum) over all policies. We consider linear bounds
for the SSP problem and our algorithmic bounds are
as follows: (a) for the sup-value (resp. inf-value) we
show that an upper (resp., lower) bound can be com-
puted in polynomial time in the implicit description of
the MDP; (b) for the sup-value (resp. inf-value) we
show that a lower (resp., upper) bound can be computed
by a polynomial-time (in the implicit description) reduc-
tion to quadratic programming. Our approach is as fol-
lows: we use results from probability theory to establish
a mathematical approach to compute bounds for the SSP
problem for succinct MDPs (Section 3), and reduce the
mathematical approach to constraint solving to obtain a
computational method (Section 4).

3. Finally, we present experimental results on several clas-
sical examples from the literature where our method
computes tight bounds (i.e., lower and upper bounds are
quite close) on the SSP problem extremely efficiently.

Comparison with approaches for factored MDPs. Some
key advantages of our approach are the following. First,
our approach gives a provably polynomial-time algorithm

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

or polynomial-time reduction to quadratic programming in
terms of the size of the implicit description of the MDP. Sec-
ond, while algorithms for factored MDPs are typically suit-
able for finite-state MDPs, our method can handle MDPs with
countable state space (e.g., when the domains of the variables
are integers), or even uncountable state space (e.g., when the
domains of the variables are reals). See Remark 1 for details.

2 Definitions and Examples

We define succinct Markov Decision Processes, the stochastic
shortest path problem, and provide illustrative examples.

2.1 Succinct Markov Decision Processes

Markov decision processes (MDPs). MDPs are a standard
mathematical model for sequential decision making. An
MDP consists of a state space .S and a finite action space A,
and given a state s and an action a permissible in s, there is
a probability distribution function P that describes the transi-
tion probability from the current state to the next states (i.e.,
P(s’ | s,a) is the transition probability from s to s’ given
action a). Moreover, there is a reward assigned to each state
and action pair.

Factored MDPs. In many applications of MDPs, the
state space of the MDP is high-dimensional and huge (i.e.,
the state space consists of valuations to many variables). For
computational analysis it is often considered that the MDP
can be factored, i.e., the transition and reward probabilities
depend only on a small number of variables. For algorith-
mic analysis of finite-state factored MDPs see [Guestrin et
al., 2003].

Succinct MDPs. 1In this work, we consider succinct
MDPs, which are related to factored MDPs. First, we present
an informal description and then the details. A succint MDP
is described by a set of variables, and a set of rules that update
them. The update rule can be chosen non-deterministically
or stochastically. Thus the MDP is described implicitly with
the set of rules and a condition that describes the target set of
states, and the MDP terminates when the target set is reached.
We describe succinct MDPs as a special class of programs
with a single while loop.

Simple-while-loop succinct MDPs. We consider suc-
cinct MDPs described by a simple while loop program. There
are two types of variables, namely, program and sampling
variables. Program variables are normal variables, while sam-
pling variables are those whose values are sampled indepen-
dently wrt some probability distribution. In general, both pro-
gram and sampling variables can take integer, or even real
values. The succinct MDP is described by a simple while
loop of the form:

while ¢ do Q,0...00Q; od (1

* ¢ is the loop guard defined as a single comparison be-
tween linear arithemtic expressions over program vari-
ables (e.g. <y + 1);

4701

* in the loop body, Q)1,...,Q are sequential composi-
tions of assignment statements, grouped by the non-
determinism operator [].

Every assignment statement has a program variable as its left-
hand-side and a linear arithmetic expression over program
and sampling variables as its right-hand-side. The operator []
is the nondeterministic choice which means that the decision
as to which @; will be executed in the current loop iteration
depends on a scheduler (or policy) that resolves nondetermin-
ism. We first provide the formal syntax and then an example.

Formal syntax of simple-while-loop programs. A suc-
cinct MDP is specified by a simple-while-loop program
equipped with probability distributions for sampling vari-
ables. We now formalize the intuitive description provided in
Equation (1). Formally, a simple-while-loop program can be
produced using the following grammar, where each <pvar>
is chosen from a finite fixed set X of program variables, each
<svar> from a finite fixed set R of sampling variables and
each <constant> denotes a floating point number:

b}

(simple-while-loop-program) ::= ‘while’ (guard) ‘do’ “{
(nondet-block-list) ‘}’ ‘od’

(guard) ::= (linear-pvar-expr) (cmp) (linear-pvar-expr)

(linear-pvar-expr) := {constant) | (constant) ‘* (pvar)
| (linear-pvar-expr) ‘+’ (linear-pvar-expr)

(emp) == >="1>"|‘<="| ‘<

(nondet-block-list) ::= (block)
| (block)y O (nondet-block-list)

(block) = (assignment) | (assignment) (block)

3 .

(assignment) ::= (pvar) ‘:=" (linear-expr) ;
(linear-expr) ::= {constant) | {constant) ‘x" {pvar)
| {constant) ‘»’ (svar)
| (linear-expr) ‘+° (linear-expr)

Example 1. Consider the following program
whilexz > ldoz:=x+rdx:=2—1od

where x is a program variable and r is a sampling variable
that observes the two-point distribution P(r = —1) = P(r =
1) = % Informally, the program perforn?s.either dgcrement
or random increment/decrement on x until its value is zero.

Informal description of the semantics. Given a simple-
while-loop program in the form (1), an MDP is obtained as
follows: the state space S consists of values assigned to pro-
gram variables (i.e., valuations for program variables); the
action space A correponds to the non-deterministic choice be-
tween (1, ..., Q; and the transition function P depends on
the sampling of the sampling variables, which given the cur-
rent valuation for program variables probabilistically updates
the valuation. The assignments are linear functions, and the
loop guard ¢ describes the target states as those which do not
satisfy ¢. Given the above components, the notion of a policy
(or scheduler) o that resolves the non-deterministic choices,

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

and that of the probability space P given a policy is stan-
dard [Puterman, 1994]. For a more formal treatment of the
semantics, see [Chatterjee et al., 2018].

Remark 1 (Simple-while-loop MDPs and Factored MDPs).
The principle behind factored MDPs and simple-while-loop
succinct MDPs is similar. Both aim to consider high-
dimensional and large MDPs described implicitly in a suc-
cinct way. In factored MDPs the transitions and reward func-
tions can be factored based on small sets of variables, but the
dependency on the variables in these sets can be arbitrary.
In contrast, in simple-while-loop succinct MDPs, we only al-
low linear arithmetic expressions as guards and assignments.
Moreover, our MDPs do not allow nesting of while loops.
The goal of our work is to consider linear upper and lower
bounds, and nesting of linear loops can result in super-linear
bounds. Hence, we do not consider nesting of loops. There-
fore, simple-while-loop succinct MDPs are a special class of
factored MDPs.

For algorithmic approaches with theoretical guarantees
on computational complexity, the analysis of factored MDPs
has typically been restricted to finite-state MDPs. However,
we will present solutions for simple-while-loop programs,
where the variables can take integer or real values, and
thus the underlying state space is infinite or even uncount-
able. Thus the class of simple-while-loop MDPs consists of
large finite-state MDPs (when the variables are bounded);
countable state MDPs (variables are integer); and even un-
countable state MDPs (variables are real-valued). Moreover,
our algorithmic approaches provide computational complex-
ity guarantee on the input size of the implicit representation of
the MDP. Note that for finite-state MDPs, the implicit repre-
sentation can be exponentially more compact than the explicit
MDP. For example, n boolean variables lead to a state-space
of size 2.

In the sequel we consider MDPs obtained from simple-
while-loop programs and, for brevity, call them succinct
MDPs.

2.2 Stochastic Shortest Path on Succinct MDPs

We consider the stochastic shortest path (SSP) problem on
succinct MDPs. Below we fix a succinct MDP described by
a while-loop in the form (1).

Reward function. We consider a reward function R that
assigns a reward R(u, /) when the sampling valuation for
sampling variables is u and the non-deterministic choice is
Q¢ (in a loop iteration). We assume that there is a maximal
constant Ry,.x > 0 such that |R(u, ¢)| < Ryax for all u, £.
The rewards need not be nonnegative as our approach is able
to handle negative rewards as well. Moreover, our approach
can be extended to allow bounded reward functions that de-
pend on program variables, too. See [Chatterjee et al., 2018]
for a more detailed discussion.

Stochastic shortest path. Given an initial valuation v for
program variables and a policy o, the definition of expected
total reward/cost until termination is standard. The inf-value
(resp., sup-value) of a succinct MDP, given an initial valu-

while 2 >1 do

0 if04) { x:=x+1 reward=1 }
else { z=2-1 1}
0 if03) { x:=x+1 reward=1 }
else { z=2-1 1}

Figure 1: Gambler’s Ruin as a succinct MDP

ation v for program variables, is the infimum (resp., supre-
mum) expected reward value over all policies that ensure fi-
nite expected termination time, which we denote as infval(v)

(resp., supval(v)).

Computational problem. We consider the computational
problem of obtaining upper and lower bounds for the inf-
value and sup-value for succinct MDPs. Due to the similar-
ity of the problems, we focus on computing lower and upper
bounds for the sup-value. The results for inf-value are similar
and omitted. For formal details, see [Chatterjee et al., 2018].

2.3 Illustrative Examples

Example 2 (Gambler’s Ruin). We start with a simple and
classical example. A gambler has x tokens for gambling. In
each round he can choose one of the two types of gambling.
In type 1, he wins with probability py < 1/2 and in type 2
with probability ps < 1/2. A win leads to a reward of w and
an extra token. A loss costs one token. The player gambles
as long as he has tokens left. His goal is to maximize overall
expected reward. Letting p1 = 0.4,po = 0.3and w =1, a
succinct MDP for this example is shown in Figure 1.

Remark 2. Note that above we use probabilistic if as syntac-
tic sugar, where the assignments in if (p) run with probability
p and those in the else part with probability 1 — p. Given
that the assignments are linear, this can be translated back
to a succinct MDP, e.g. the first if-else block in Figure I is
equivalent to:

rz:=x+r reward=0.4

where t is a sampling variable with P(r = 1) = 0.4 and
P(r = —-1) =0.6.

Example 3 (Continuous variant). We can also consider a
continuous variant of the example where the sampling vari-
able r is chosen from some continuous distribution with ex-
pected value —0.2 (e.g., uniform distribution [—0.8,0.4]).

3 Theoretical Results

In this section we present the main theoretical results which
forms the basis of our algorithms of the following section.

Notation. Given a succinct MDP in the form (1), we let
X be the set of program variables in the program, | X| be the
size of X, RIXI be the set of | X |-dimensional real-valued vec-
tors, v € RIXI be a valuation for program variables such that
the value for the ith program variable is the ith coordinate of
v, u be a valuation for sampling variables, N := {1,... k}

4702

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

[Notation | Meaning \
X the set of program variables
| X] the size of X
RIXT the set of | X'|-dimensional real column vectors
v a valuation for program variables
u a valuation for sampling variables
infval(v) the inf-value for initial valuation v
supval(v) the sup-value for initial valuation v
N the set of non-deterministic choices
[a non-deterministic choice in NV
Ey the transformation function of)y mapping
valuations before its execution to the resulting
valuation after it
R the reward function
Rmax an upperbound for the absolute value of the rewards

Table 1: A Summary of Notation

be the set of non-deterministic choices, ¢ € N be a non-
deterministic choice, and Fy (¢ € N) be the function such
that Fy(v,u) is the valuation for program variables resulting
from executing (), with the valuation v for program variables
and the sampled valuation u for sampling variables. Table 1
summarizes the notation.

Upper bounds. We first introduce the main concept for
computing an upper bound for supval(v) formally, and then
present the informal description.

Definition 1 (Linear Upper Potential Functions (LUPFs)).
A linear upper potential function (LUPF) is a function h :
RIX! — R that satisfies the following conditions:

(C1) h is linear, i.e., there exist a € RX! and b € R such
that for all v € RIX|, we have h(v) = aT - v + b

(C2) for all v,u,l such that v |= ¢, Fy(v,u) = —¢ and
¢ € N, we have K < h(Fy(v,u)) < K’ for some fixed
constants K and K';

(C3) forall £ € N and all valuations v such that v |= ¢,

h(v) =z Eu(h(Fi(v,0))) + Eu(R(u, ()

where Ey(h(Fy(v,u))),Ey(R(u,l)) are the expected
values over the sampling u when fixing v and {;

(C4) for all v such that v = ¢, all sampling valuations u
and all ¢ € N, we have |h(v) — h(Fy(v,u))| < M for
some fixed constant M > 0.

Informally, (C1) specifies the linearity of LUPFs, (C2)
specifies that the value of the function at terminating valua-
tions should be bounded, (C3) specifies that the current value
of the function at v is no less than that of the next step at
Fy(v,u) plus the cost/reward at the current step, and finally
(C4) specifies that the change of value between the current
step v and the next step Fy(v,u) is bounded. Note that
Eu(h(Fy(v,u))) is linear in v since h and F} are linear. Note
that the function h (only) depends on the valuations of the
variables before the loop execution, and hence it is only loop-
dependent (but not dependent on each assignment).

The following theorem shows that LUPFs indeed serve
as upper bounds for supval(.).

Theorem 1. If h is an LUPEF, then supval(v) < h(v) — K
for all valuations v € RIX! such that v = .

Proof sketch. The key ideas of the proof are as follows:
Fix any scheduler o that ensures finite expected termination
time.

* We first construct a stochastic process based on h. Us-
ing the condition (C3) which is non-increasing prop-
erty we establish that the stochastic process obtained
is a supermartingale (for definitions of supermartingale
see [Williams, 1991, Chapter 10]). The supermartingale
in essence preserve the non-increasing property.

* Given the supermartingale, we apply Optional Stopping
Theorem (OST) ([Williams, 1991, Chapter 10.10]), and
use condition (C4) to establish the required boundedness
condition of OST, to arrive at the desired result.

See [Chatterjee et al., 2018] for the full formal proof. O

While conditions (C1) and (C2) are not central to the
proof, the condition (C1) ensures linearity, which will be
required by our algorithms, and the condition (C2) is the
boundedness after termination, that derives the desired upper
bounds (i.e., contribution of the term K comes from condi-
tion (C2)).

Lower bounds. We now consider the lower bounds.

Definition 2 (Linear Lower Potential Functions (LLPFs)).
A linear lower potential function (LLPF) is a function h :
RIXI — R that satisfies (C1),(C2),(C4) and in addition (C3’)
(instead of (C3)) as follows:

(C3’) there exists £ € N such that
h(v) < Eq(h(Fe(v,u))) + Eu(R(u,?))
for all v satisfying v = ¢.

Similar to Theorem 1, we obtain the following result on
lower bounds for supval(.).

Theorem 2. If h is an LLPF, then supval(v) > h(v) — K’
for all valuations v € RX! such that v E .

4 Computational Results

By Theorem 1 and Theorem 2, to obtain tight upper and lower
bounds for the SSP problem, we need an algorithm to obtain
good LUPFs and LLPFs, respectively. We present the results
for upper and lower bounds separately.

4.1 Computational Approach for Upper Bound

The key steps to obtain an algorithmic approach is as follows:
(i) we first establish a linear template with unknown coeffi-
cients for a LUPF from (C1); (ii) then we transform logical
conditions (C2)—(C4) equivalently into inclusion assertions
between polyhedrons; (iii) next we transform inclusion asser-
tions into linear inequalities through Farkas’ Lemma; (iv) fi-
nally we solve the linear inequalities through linear program-
ming, where the solution for unknown coefficients in the tem-
plate synthesizes a concrete LUPF that serves as an upper
bound for the sup-value. We now recall Farkas’ Lemma.

4703

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

Theorem 3 (Farkas’ Lemma [Farkas, 1894]). Ler A €
R™ " b € R™ ¢ € R" and d € R. Suppose that
{x e R" | Ax < b} #). Then

{x cR"|Ax<b} C{xecR"|c"x < d}

iff there exists y € R™ such thaty > 0, ATy = c and
bTy < d

Intuitively, Farkas’ Lemma transforms the inclusion
problem of a nonempty polyhedron within a halfspace into
a feasibility problem of a system of linear inequalities. As
a result, one can decide the inclusion problem in polynomial
time through linear programming.

The Algorithm UpperBound. Consider as input a suc-
cinct MDP in the form (1).

1. Template. The algorithm sets up a column vector a of
| X | fresh variables and a fresh scalar variable b such that
the template for an LUPF his h(v) = aT - v + b.

2. Constraints on a and b. We first encode the condition
(C2) for the template h as the inclusion assertion

{(v,u) | v = ¢ Fu(v,u) = ~¢}
C{(v,u)| K <aTl-Fy(v,u) +b< K'}

parameterized with a, b, K, K’ for every £ € N, where
K, K’ are fresh unknown constants.
Then for every £ € N, the algorithm encodes (C3) as

{vivEe S{vles

where ¢y, d, are unique linear combinations of unknown
coefficients a, b satisfying that ¢} - v < d, is equiv-
alent to h(v) > Ey(h(Fe(v,u))) + Ex(R(u,?)). Fi-
nally, the algorithm encodes (C4) as inclusion assertions
with a fresh unknown constant M using similar transfor-
mations. All the inclusion assertions (with parameters
a, b, K, K', M) are grouped conjunctively so that these
inclusions should all hold.

3. Applying Farkas’ Lemma. The algorithm applies
Farkas’ Lemma to all the inclusion assertions generated
in the previous step and obtains a system of linear in-
equalities involving the parameters a, b, K, K', M.

4. Constraint Solving. The algorithm calls a linear pro-
gramming solver on the linear program consisting of the
system of linear inequalities generated in the previous
step and the minimizing objective function a™ - v +b—
K where v is an initial valuation for program variables.

-VSdz}

Correctness and running time. The above algorithm ob-
tains concrete values for a, b, K, K/, M and leads to a con-
crete LUPF h. The correctness that a™ - v +b— K is an upper
bound for the sup-value follows from Theorem 1. The main
optimization solution required by the algorithm is linear pro-
gramming, and thus our algorithm runs in polynomial time in
the size of the input succinct MDP.

Theorem 4. Given a succinct MDP and the SSP problem,
the best linear upper bound (wrt an initial valuation) on the
sup-value can be computed in polynomial-time in the implicit
description of the MDP.

Example 4. Consider the Gambler’s Ruin example (from
Section 2.3, Figure 1).

Let h : R — R be an LUPF for this example, we have:
YA, A ER Ve eR h(z) = Mz + Ao
JIK,K'eR Vxe[1,2) K <h(z) <K'
YVze[l,00)h(z) > 0.4-(1+h(z+1))+0.6-h(z—1)
)Vze[l,00)h(z) > 0.3-(14+h(x+1))+0.7-h(z—1)
)3IM € [0,00)Vz € [1,00) |h(z) —h(x—1)| <M
) and |h(z)—h(z+1)| <M

Note that for condition (C2) we need to quantify over
x € [1,2), as if x is not in this range, then the loop does
not terminate in the next iteration. Given condition (C1), the
two (C4) conditions are equivalent to M > \1. Also, the
(C2) condition is equivalent to K < min{h(1),h(2)} and
K’ > max{h(1),h(2)} or more precisely K < A + Ao,
K <2\1+Xo, K' > M +Xyand K’ > 2)\1+)s. By expand-
ing the occurrences of h in the first (C3) condition and simpli-
Sfying, we getVa € [1,00) 0 > 0.4 — 0.2\; and we can drop
the quantification given that x does not appear. Similarly, the
second (C3) condition is equivalent to 0 > 0.3—0.4)\1. In our
method, such equivalences are automatically obtained by ap-
plying Farkas’ Lemma rather than manual inspection of the
inequalities. Now that all necessary conditions are replaced
by equivalent linear inequalities, we can solve the linear pro-
gram to find an LUPF. An optimal answer (with minimal \1)
is the following: \y = M =2, o = K = 0, K/ = 4. There-
fore by Theorem 1, we have supval(xzy) < 2xq for all initial
valuations x that satisfy the loop guard. O

(1
(€2
(C3
(C3
(C4
(C4

Remark 3. Note that our approach is applicable to succinct
MDPs with integer as well as real-valued variables, (i.e., the
underlying state-space of the MDP is infinite). Even when we
consider integer variables, since h gives upper bounds, the
reduction is to linear programming, rather than integer lin-
ear programming. Note that our approach only depends on
expectation of sampling variables, and thus applicable even
to continuous sampling variables with same expectation, e.g.,
our results apply uniformly to Example 2 and Example 3,
given that the sampling variable r has same expectation.

4.2 Computational Approach for Lower Bound

The algorithm for lower bound is similar to the upper bound,
however, there are some subtle and key differences. An im-
portant difference is that while in Step 2 of the algorithm
for upper bound, there is a conjunction of contraints, for the
lower bound problem it requires a disjunction. This has two
important implications: first, we need to consider a general-
ization of Farkas’ lemma and in this case we use Motzkin’s
Transposition Theorem (which extends Farkas’ Lemma with
strict inequalities) and second, instead of linear programming
we require quadratic programming.

Theorem 5 (Motzkin’s Transposition Theorem [Motzkin,
1936]). Let A € R™*™ B € RF*" gqnd b € R™, ¢ € R*.
Assume that {x € R™ | Ax < b} # 0. Then

{xeR" | Ax<b}N{xeR" |Bx<c}=0

iff there exist y € R™ and z € R* such that y,z > 0,
1" 2>0 ATy +BTz=0and by +cTz < 0.

4704

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

The Algorithm LowerBound. Our algorithm is similar
to UpperBound. For brevity, we only explain the differences.

1. Template h. Same as in the Algorithm UpperBound.

2. Constraints on a and b. The algorithm first encodes (C2)
and (C4) as inclusion assertions in the same way as in
UpperBound and transforms them into linear inequali-
ties over a, b, K, K', M through Farkas’ Lemma.

Then the algorithm transforms (C3’) equivalently into
the inclusion assertion

(vIvE¢} CUenivlel - v<dg

where cy,d, are determined in the same way as in
UpperBound. Furthermore, this inclusion assertion is
equivalently written as

{(VvIvENNen{vlie v>di =0

and then transformed into a system of quadratic inequal-
ities over a and b through Motzkin’s Transposition The-
orem. The system may involve quadratic inequalities
since ¢, contains the unknown parameters a and b.

3. Constraint Solving. The algorithm calls a nonlinear-
programming solver on the system of linear and
quadratic inequalities generated in the previous step with
the maximizing objective function a™ -vy+b— K’ where
Vo is an appropriate initial valuation.

Correctness and optimization problem. As for the upper
bound, once a, b, K, K’, M are found, we obtain an concrete
lower bound aT-v+b— K’ for the sup-value from Theorem 2,
establishing the correctness of our algorithm. The reduction
leads to a quadratic optimization problem of polynomial size
wrt the succinct MDP, implying the following result.

Theorem 6. Given a succinct MDP and the SSP problem, the
best linear lower bound (wrt an initial valuation) on the sup-
value can be computed via a polynomial (in the implicit de-
scription of the MDP) reduction to quadratic programming.

Example 5. Let h : R — R be an LLPF for the Gambler’s
Ruin example (Figure 1 in Section 2.3). The conditions of the
form (Cl1), (C2) and (C4) are exactly the same as in Exam-
ple 4. In addition, h must also satisfy the following condition:

(C3) Vze[l,00)
h(z) <04-(1+h(x+1))+0.6-h(x—1) or
h(z) <03+ (1+h(z+1))+ 0.7 h(z — 1)

Expanding the occurrences of h in the condition above
using h(x) = M + Ao, and discarding the quantification,
we obtain the following equivalent disjunctive system of in-
equalities: 0 < 0.4 — 0.2\; or 0 < 0.3 — 0.4\1. This sys-
tem is obviously equivalent to \y < 2. Note that in gen-
eral we have disjunction of linear inequalities, which require
quadratic programming. As explained previously, such equiv-
alences are automatically obtained by our algorithm using
Motzkin’s transposition theorem.

Adding the equivalent linear forms of conditions (CI),
(C2) and (C4) as in Example 4 and considering the result-
ing linear program with the objective of maximizing \1 leads
to the following solution: \1 = M = 2,y = -2, K =

4705

0, K’ = 2. Therefore, by Theorem 2, supval(zg) > 2xq for
every initial valuation x that satisfies the loop guard. This is
the same upper bound we found in Example 4. The bound is
tight. O

5 Case Studies and Experiments
5.1 Additional Examples

We consider several other classical problems in probabilistic
planning that can be described as succinct MDPs.

Two-dimensional Robot Planning. Consider a robot that
is placed on an initial point (zg, yo) of a grid. A player con-
trols the robot and at each step, can order it to move one unit
in either direction. However, the robot is not perfect. It fol-
lows the order with probability p < 1 and ignores it and goes
to the left with probability 1 — p. The process ends when the
robot leaves the x > y half-plane and the player’s objective is
to keep the robot in this half-plane. The player gets a reward
of 1 each time the robot moves. Note that our method can
handle any half-plane and starting point.

Multi-robot Planning. Our approach can handle many
variables and is only polynomially dependent on the succinct
representation of the MDP. To demonstrate this, we consider
a scenario similar to the previous case, in which there are
now two robots 71 and 7o starting at positions (zg, yo) and
(x5, y0)- The robot r follows the orders with probability p;
and malfunctions and goes right with probability 1 —p;. Sim-
ilarly, ro follows the commands with probability ps and goes
left with probability 1 — ps. The player’s goal is to keep 71 to
the left of 79, i.e. to keep the robots in the four-dimensional
half-space x < 2. The process ends when the robots leave
this half-space and the player gets a reward of 1 per step.

Mini-roulette. We model Mini-roulette which is a game
on a 13-slot wheel. A player starts with zo chips. She needs
one chip bet and she bets as long as she has chips. If she loses,
the chip will not be returned, but a win will not consume the
chip and results in a specific amount of (monetary) reward,
and possibly even more chips. These types of bets can be
placed: (i) Even money bets: 6 specific slots are chosen. Then
the ball is rolled and the player wins if it lands in one of the
6 slots. So the winning probability is 6/13. Winning gives
a unit reward and one extra chip. (ii) 2-fo-1 bets: 4 slots are
chosen and winning gives a reward of 2 and 2 extra chips.
(iii,iv,v) 3-to-1, 5-to-1 and 11-to-1 bets: These correspond to
winning probabilities of 3/13,2/13 and 1/13 respectively.

American Roulette. The game is like Mini-roulette, ex-
cept that there are more types of bets and the wheel has 38
slots. The player can now have half-chips. A bet can lead to
one of three outcomes: definite loss, partial loss or win. A
definite loss costs one chip and a partial loss half a chip. A
win pays a reward and more chips. Table 2 summarizes the
bets.

5.2 Experimental Results

We implemented our approach in Java and experimented on
all examples mentioned previously. The results are summa-

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

Type ‘Winning Partial Winning | Winning
Probability Loss Reward | Tokens
Probability

35-to-1 1/38 0 35 35
17-to-1 1/19 0 17 17
11-to-1 3/38 0 11 11
8-to-1 2/19 0 8 8
6-to-1 5/38 0 6 6
5-to-1 3/19 0 5 5
2-to-1 6/19 1/19 2 2

Even 9/19 1/19 1 1

Table 2: Types of bets available in American Roulette.

\ MDP | Parameters| Upper bound | Lower bound | Time |
Gambler’s p1 =04 2z 2z 153 ms
Ruin p2 =0.3
2D Robot p=04 5z — by 5z — by 251 ms
Planning
Multi-robot p1 =04 | 25x—-2.5y+5 | 2.5z —2.5y | 758 ms
Planning p2 =04
Mini-roulette — 11z 11z 320 ms
American — 24x 24x 425 ms
Roulette

Table 3: Experimental Results

rized in Table 3, where “Parameters” shows concrete parame-
ters for our examples, “Upper bound” (resp. “Lower bound”)
presents the LUPFs (resp. LLPFs) obtained through our ap-
proach, and finally “Time” shows the running time in mil-
liseconds. The reported upper bounds on sup-values are the
results of h(v) — K as in Theorem 1. Similarly, lower bounds
on sup-values are obtained from h(v) — K’ as in Theorem 2.
Finally, our approach is not sensitive to parameters as varying
them will only change coefficients of our LUPFs/LLPFs.

Runtime. Our approach is extremely efficient and han-
dles all these MDPs, even when the succinct representation is
large, in less than a second. The results were obtained on an
Intel Core 15-2520M machine, running Ubuntu. We used Ip-
solve [Berkelaar et al., 2004], JavaILP [Lukasiewycz, 2008]
and JOptimizer [Tivellato, 2017] for optimization tasks.

Significance of our results. First, observe that in most
experimental results the upper and lower bounds are tight.
Thus our approach provides precise bounds on the SSP prob-
lem for several classical examples. Second, our results apply
to infinite-state MDPs: in all the above examples, we con-
sider infinite-state MDPs, where algorithmic approaches for
factored MDPs do not work. Finally, in the above examples,
instead of infinite-state MDPs if we consider large finite-state
MDP variants (e.g., bounding « in Gambler’s Ruin with a
large domain), then as the MDP becomes larger, the SSP
value of the finite-state MDP approaches the infinite-state
value. Hence, our tight bounds on the infinite-state SSP value
provide efficient approximation for large finite-state MDPs.

6 Related Works

MDPs. MDPs are widely studied in the Al literature [Sigaud
and Buffet, 2010; Dean et al, 1997; Singh et al., 1994;
Williams and Young, 2007; Poupart et al., 2015; Gilbert et
al., 2017; Topin et al., 2015; Perrault and Boutilier, 2017;

4706

Boutilier and Lu, 2016; Ferns et al., 2004]; and factored
MDPs are considered as an effective approach [Guestrin ef
al., 2003]. We introduced succinct MDPs and efficient algo-
rithms which are applicable to several problems in Al

PPDDL and RDDL. There are a variety of languages
for specifying MDPs and especially factored MDPs. Two of
the most commonly used are PPDDL [Younes and Littman,
2004] and RDDL [Sanner, 2010]. These are general lan-
guages capturing all factored MDPs. Instead, we consider
succinct MDPs with linear guards and assignments and no
nested while-loops. Hence, our language is simpler than
them.

Programming language results. Besides the Al commu-
nity, research in programming languages also considers prob-
abilistic programs and algorithmic approaches [Chakarov and
Sankaranarayanan, 2013; Chatterjee er al., 2016]; but the
main focus is on termination, whereas we consider the SSP
and compute precise bounds. While both approaches use the
theory of martingales, the key differences are as follows:

e Problem difference: [Chatterjee et al., 2016] considers
the number of steps to termination. There is no notion of
reward or stochastic shortest path. In contrast, we con-
sider rewards and SSP. In particular, we have negative
rewards that cannot be modeled by the notion of steps.

* Result difference: [Chatterjee er al., 2016] considers
the qualitative question of whether expected termination
time is finite or not, and then applies Azuma’s inequal-
ity to martingales for concentration bounds. In contrast,
we present upper and lower bounds on expected SSP.
Thus our results provide quantitative (rather than qual-
itative) bounds for expected SSP that significantly gen-
eralize expected termination time. However, our results
are applicable to a more restricted class of programs.

* Proof-technique difference: [Chatterjee et al., 2016]
considers qualitative expected termination time charac-
terization, and the main mathematical tool is martingale
convergence that does not handle negative rewards. In
contrast, we present quantitative bounds for SSP and our
mathematical tool is Optional Stopping Theorem.

Comparison with [Hansen and Abdoulahi, 2015]. This
work provides convergence tests for heuristic search value-
iteration algorithms. While both approaches provide bounds
for SSPs, the main differences are as follows: (i) our ap-
proach can handle negative costs whereas [Hansen and Ab-
doulahi, 2015] can handle only positive costs; (ii) our results
are on the implicit representation of MDPs, while [Hansen
and Abdoulahi, 2015] evaluates parts of the explicit MDP;
and (iii) our approach presents polynomial reductions to op-
timization problems and is not dependent on value-iteration.

7 Conclusion

We consider succinct MDPs and present algorithms for the
SSP problem on them. A direction for future work is to con-
sider other algorithmic approaches for succinct MDPs. Also,
we consider linear templates and extending our approach to
more general templates is another interesting direction.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

Acknowledgements

The research was partially supported by Vienna Science
and Technology Fund (WWTF) Project ICT15-003, Aus-
trian Science Fund (FWF) NFN Grant No S11407-N23
(RiSE/SHINE), and ERC Starting grant (279307: Graph
Games).

References

[Berkelaar et al., 2004] Michel Berkelaar, Kjell Eikland, Pe-
ter Notebaert, et al. LPsolve: Open source (mixed-integer)
linear programming system. Technical report, 2004.

[Bertsekas, 2005] Dimitri Bertsekas. Dynamic programming
and optimal control. Athena Scientific, 3rd edition, 2005.

[Boutilier and Lu, 2016] Craig Boutilier and Tyler Lu. Bud-
get allocation using weakly coupled, constrained Markov
decision processes. In UAI pages 52-61, 2016.

[Chakarov and Sankaranarayanan, 2013] Aleksandar
Chakarov and Sriram Sankaranarayanan. Probabilis-
tic program analysis with martingales. In CAV, pages
511-526, 2013.

[Chatterjee et al., 2016] Krishnendu Chatterjee, Hongfei Fu,
Petr Novotny, and Rouzbeh Hasheminezhad. Algorithmic
analysis of qualitative and quantitative termination prob-
lems for affine probabilistic programs. In POPL, pages
327-342, 2016.

[Chatterjee er al., 2018] Krishnendu Chatterjee, Hongfei Fu,
Amir Goharshady, and Nastaran Okati. Computational ap-
proaches for stochastic shortest path on succinct MDPs.
arXiv preprint arXiv:1804.08984, 2018.

[Dean et al., 1997] Thomas Dean, Robert Givan, and Sonia
Leach. Model reduction techniques for computing approx-

imately optimal solutions for Markov decision processes.
In UAI pages 124-131, 1997.

[Delgado et al., 2011] Karina Valdivia Delgado, Scott San-
ner, and Leliane Nunes De Barros. Efficient solutions to
factored MDPs with imprecise transition probabilities. Ar-
tif. Intell., 175(9-10):1498-1527, 2011.

[Farkas, 1894] Julius Farkas. A Fourier-Féle mechanikai
elv alkalmazdsai (Hungarian). Mathematikaiés Ter-
mészettudomdnyi Ertesito, 12:457-472, 1894.

[Ferns et al., 2004] Norm Ferns, Prakash Panangaden, and
Doina Precup. Metrics for finite Markov decision pro-
cesses. In UAI, pages 162—-169, 2004.

[Filar and Vrieze, 1997] Jerzy Filar and Koos Vrieze. Com-
petitive Markov Decision Processes. Springer, 1997.

[Gilbert et al., 2017] Hugo Gilbert, Paul Weng, and Yan Xu.
Optimizing quantiles in preference-based Markov decision
processes. In AAAI pages 3569-3575, 2017.

[Guestrin et al., 2003] Carlos Guestrin, Daphne Koller,
Ronald Parr, and Shobha Venkataraman. Efficient solution

4707

algorithms for factored MDPs.
19:399-468, 2003.

[Hansen and Abdoulahi, 2015] Eric A Hansen and Ibrahim
Abdoulahi. Efficient bounds in heuristic search algorithms
for stochastic shortest path problems. In AAAI, pages
3283-3290, 2015.

J. Artif. Intell. Res.,

[Howard, 1960] Ronald A Howard. Dynamic Programming
and Markov Processes. MIT Press, 1960.

[Lukasiewycz, 2008] Martin Lukasiewycz. JavalLP - java
interface to ILP solvers, javailp.sourceforge.net, 2008.

[Motzkin, 1936] Theodore Samuel Motzkin. Beitrcige zur
Theorie der linearen Ungleichungen (German). PhD the-
sis, Basel, Jerusalem, 1936.

[Perrault and Boutilier, 2017] Andrew Perrault and Craig
Boutilier. Multiple-profile prediction-of-use games. In
AAMAS, pages 275-295, 2017.

[Poupart et al., 2015] Pascal Poupart, Aarti Malhotra, Pei
Pei, Kee-Eung Kim, Bongseok Goh, and Michael Bowl-
ing. Approximate linear programming for constrained par-
tially observable Markov decision processes. In AAAI,
pages 3342-3348, 2015.

[Puterman, 1994] Martin L Puterman. Markov Decision Pro-
cesses: Discrete Stochastic Dynamic Programming. Wi-
ley, 1994.

[Sanner, 2010] Scott Sanner. Relational dynamic influence
diagram language (RDDL): Language description. Tech-
nical report, 2010.

[Sigaud and Buffet, 2010] Olivier Sigaud and Olivier Buffet.
Markov Decision Processes in Artificial Intelligence. Wi-
ley, 2010.

[Singh et al., 1994] Satinder P Singh, Tommi Jaakkola, and
Michael I Jordan. Learning without state-estimation in
partially observable Markovian decision processes. In Ma-
chine Learning Proceedings, pages 284 — 292. Morgan
Kaufmann, 1994.

[Tivellato, 2017] Alberto Tivellato. JOptimizer - Java convex
optimizer, www.joptimizer.com, 2017.

[Topin et al., 2015] Nicholay Topin, Nicholas Haltmeyer,
Shawn Squire, John Winder, Marie desJardins, and James
MacGlashan. Portable option discovery for automated
learning transfer in object-oriented Markov decision pro-
cesses. In IJCAI, pages 3856-3864, 2015.

[Williams and Young, 2007] Jason D Williams and Steve
Young. Partially observable Markov decision processes for
spoken dialog systems. Comput. Speech Lang., 21(2):393—
422, 2007.

[Williams, 1991] David Williams. Probability with Martin-
gales. Cambridge University Press, 1991.

[Younes and Littman, 2004] Hikan Younes and Michael L
Littman. PPDDLI1. 0: The language for the probabilistic
part of IPC-4. In IPC, pages 70-74, 2004.

